Toksyczne oddziaływanie wybranych materiałów wybuchowych na organizmy żywe

Toxic influence of selected explosives on a living organisms

Bożena Kuczyńska¹, Andrzej Maranda²

1) Szkoła Główna Służby Pożarniczej, Wydział Inżynierii Bezpieczeństwa Pożarowego,
ul. Słowackiego 52/54, 01-629 Warszawa, Polska
2) Wojskowa Akademia Techniczna, Wydział Nowych Technologii i Chemii,
ul. Gen. S. Kaliskiego 2, 00-908 Warszawa, Polska

Streszczenie: Artykuł jest jednym z elementów służących kompleksowemu opracowaniu oceny cyklu życia materiałów wybuchowych w procesach projektowania, wytwarzania, użytkowania oraz poużytkowego przetwarzania w oparciu o normy ISO serii 14040x. Zawiera informacje dotyczące toksyczności materiałów wybuchowych w odniesieniu do ludzi z opisem symptomów, objawów klinicznych oraz skutków toksyczności. Odnosi się on także do analizy toksyczności przeprowadzonej na zwierzętach oraz metabolizmu i degradacji materiałów wybuchowych w środowisku.

Abstract: The article is one of elements served as comprehensive assessment study of life cycle of explosives into design, producing, using and after using converting processes according to ISO 14040 standard. It also contains information concerning toxicity of explosives with reference to people with the description of symptoms, clinical symptoms and effects of toxicity. The article refers to toxicity analysis performed on animals as well as metabolism and degradation of explosives in environment.

Słowa kluczowe: ocena cyklu życia, materiały wybuchowe, toksyczność, metabolizm

Keywords: life cycle assessment, explosives, toxicity, metabolism

1. Wstęp

- dokonuje się wyboru kategorii wpływu, wskaźników kategorii i modeli charakteryzowania,
- przypisuje się wyniki LCI do poszczególnych kategorii wpływu (w oparciu o proces klasyfikacji),
- oblicza się wartości wskaźnika kategorii (w oparciu o proces charakteryzacji).

\[
toksyczność\ \text{dla}\ \text{ludzi} = \sum_i \sum_{ecom,i} HTP_{ecom,i} \times m_{ecom,i}
\]

gdzie: \(HTP_{ecom,i}\) – potencjał toksyczności wobec człowieka dla i-tej substancji emitowanej do danego środowiska \(ecom\) (= powietrze, czysta woda, woda morska, gleba rolnicza lub przemysłowa); \(m_{ecom,i}\) – emisja i-tej substancji do danego środowiska \(ecom\).

Zagrożenia ekologiczne wynikające ze stosowania materiałów wybuchowych to głównie toksyczność składników materiału wybuchowego i toksyczność składników produktów wybuchu. Toksyczność produktów wybuchu jest tematem osobnym i dotyczy głównie tlenków węgla oraz tlenków azotu i jest w literaturze szczegółowo opisana. Tlenek azotu wpływać będą na zakwaszenie wody i gleby, natomiast dwutlenek węgla na efekt cieplarniany, zatem wpływać będą potencjalnie na jakość ekosystemu i nie należy tego wpływu łączyć z ekotoksycznością wpływającą na zdrowie ludzkie. W przypadku, gdy istnieje ryzyko podwójnego liczenia emisji, należy tego unikać. Zasadnym jest przeanalizowanie wpływu materiałów wybuchowych na zdrowie pracowników zakładów militarnych w fazie produkcji, a nie użytkowania.

W artykule, głównie na podstawie monografii [5], przedstawiono informacje dotyczące toksyczności trotylu, tetrylu, heksogenu, nitrogliceryny, nitroglikolu oraz pentaerytu w odniesieniu do ludzi oraz zwierząt. Opisano symptomy, objawy kliniczne oraz ścieżki metaboliczne materiałów wybuchowych.

2. Toksyczność materiałów wybuchowych

2.1. Trotyl

Trotyl jest jednym z najszerzej stosowanych materiałów wybuchowych w technice wojskowej ze względu na niską temperaturę topnienia, stabilność, niską wrażliwość na uderzenie i tarcie oraz względnie bezpieczną metodę produkcji. Pracownicy zakładów wytwórczych są wystawieni na działanie MW poprzez drogi oddechowe, skórę oraz układ pokarmowy. Według Moore’a skóra stanowi jedną z głównych dróg wnikania TNT szczególnie...
w obecności zaolejenia jej bądź spoconych rąk [6]. Jednakże istnieją spore rozbieżności pomiędzy potliwością
rządką, a ilością wchłoniętego TNT u konkretnych osób. Przeprowadzanie testu u pracowników na powierzchni
różnych części ciała z użyciem alkoholowego roztworu sody kaustycznej dawało najintensywniejsze zmiany
koloru (tzw. próba Webster) na dłoniach rąk i w regionie kostki. Żołniersko-jelitowy obszar jest też ważną
drogią wchłaniania, gdyż TNT jest rozpuszczalny w sokach trawiennych i ślinie. Większość pracowników
zarzekała na gorzki smak w ustach. Zanalizowano absorpcję TNT poprzez spożycie u ludzi [7]. Dwie
osoby otrzymywały dzienną dawkę 1 mg TNT/kg masy ciała przez okres czterech kolejnych dni. We krwi
zaobserwowano wzrost mętności hemolizowanej krwi. Żadna wykrywalna zmiana w obrazie krwi nie została
potwierdzona. W codziennie wydanej uryzione oznaczono metabolity TNT w ilości 3% dziennego spożycia
TNT. Metabolitami były: 4-amino-2,6-dinitrotoluenu i 2,4-diamo-no-6-nitrotoluenu. Haythorn i McCausland
uwazają, że obszar dróg oddechowych wydaje się być mniej ważną drogą przenikania TNT do organizmu [8,9].
Pracownicy zakładów produkujących TNT jako jeden z głównych objawów kontaktu z tym MW określają
zapalenia skóry. Typowe znaki i symptomy zapalenia skóry tj. zaczerwienienia, złuszczanie i stwardnienie
mogą być dostrzegalne na wystawionych na działanie TNT rękach i przedramionach, a także pomiędzy
palcami w postaci pęcherzyków. Doznąte są także okolice narażone na tarcie podczas normalnej pracy
tj. linia kolnierzyka, takiej i kostek. Trotyl barwi ręce na kolor żółty, a skórę włosów przebarwia do koloru
czerwonego. Pracownik powraca do zdrowia z tego podrażnienia skóry po całkowitym wzieleniu go
z obszaru oddziaływania TNT [10]. Objawy gastryczne to w głównej mierze nudności, wymioty, uczucie pełni,
strata apetytu, biegunki, niestrannność [11].
Kolejnym typowym objawem zatrucia TNT jest sinica, której kulminacyjnym stadium jest sinica centralna.
Objawia się poprzez ciemnienie koloru krwi, bładość i niebieskawe zabarwienie warg i płatków helisy uszu
[12]. Natleniona hemoglobiną przybiera kolor czerwony, natomiast odłeniona jest koloru niebieskiego.
Niedobór tlenu (hypoxygenia) prowadzi do zmiany barwy warg i błon śluzowych. Brak tlenu daje początek
objawom anoksemii tj. duszną i bóle głowy podczas wysiłku, znużenie, brak tchu.
Toksykczna żółtaczka jest objawem zaawansowanego zatrucia TNT i śmiertelność w tym przypadku wynosi
około 30%. Objawy to głównie silne osłabienie, wręcę odrętwienie. Toksykczna żółtaczka zwykle łączona jest
z objawami nudności, wymiotów i sinicy, może również zdarzyć się nagle bez jakichkolwiek objawów silnego
zatrucia. McGee i inni [13] uważają, że zdiagnozowanie toksykcznej żółtaczki u pracownika może nastąpić po
potwierdzeniu dwóch z poniższych objawów jednocześnie:
- wzrostu pigmentu żółci w uryrium,
- obniżeniu czynności wątroby (np. słaba próba wątrobowa),
- zaąłceniu skóry, błon śluzowych i białkówek oczu,
- nacznosci wątroby.
Żółtaczka trotylu postępuje szybko, aż do dotkłowego żółtego zaniku wątroby. W autopsji wątroba jest znacznie
zmniejszona i charakteryzuje się pomarszczoną powierzchnią, a skóra całego ciała zabarwiona jest na żółto.
Anemia (niedokrwistość) aplastyczna to zaawansowany i poważny stan zatrucia TNT, który prawie zawsze
jest śmiertelny. Aplazja szpiku to stan, w którym dochodzi do niewydolności szpiku kostnego wskutek
niedorozwoju narządu (hipoplastii) lub aplazji czyli nie wykształcenia się narządu, skutkujące obniżeniem
liczności wszystkich linii komórek krwi, to znaczy erytrocytów, leukocytes i trombocytes [14]. Pierwsze
znaki niedokrwistości aplastycznej to krowtak z błon śluzowych, nosa i ust.
W związku z powyższym u pracowników objaw bładości nigdy nie powinien być zlekcwawążony. Aplastyczna
anemia czasami rozwija się już po okresie wystawienia od działania TNT na organizm. W przypadku anemii
szyska redukcja czerwonych krwinek i hemoglobinę powinna stanowić najwyraźniejszy znak uszkodzenia
szpiku kostnego, w konsekwencji pojawienie się niedokrwistości szpiku kostnego. W początkowych fazach
zatrucia TNT zniesienie i regeneracja czerwonych krwinek może zachodzić równolegle. Ten okres jest
charakteryzowany poprzez nacznność produkcji czerwonych krwinek, co potwierdza, że bardzo małe ilości
TNT mogą spowodować najmniejsze pobudzenie szpiku kostnego kończącego się wzrostem ilości czerwonych
krwinek. Krew pacjentów z silnym zatruciem TNT ma ciemny niebieskawy czerwony kolor i podwyższoną
lepkość. Medyczne badanie 250 mężczyzn i 103 kobiet pracujących z TNT i 55 mężczyzn i 50 kobiet pracujących
w tej samej firmie bez kontaktu z TNT zostało poddanych badaniu przez Sieversa [15]. Wystawieni ludzie
zostali zatrudnieni na okres 8 miesięcy, a kobiety na okres 3 miesiące. Nie stwierdzono żadnych przypadków surowego zatrucia TNT. Dwudziestu jeden z narażonych pracowników zostało sklasyfikowanych z objawami łagodnego zatrucia TNT. Potwierdzono u osób narażonych na TNT spadek hemoglobiny, spadek poziomu hemotokrytu, krwinek czerwonych przy jednoczesnym niedużym wzroście indeksu żółtaczki i moczowym poziomie kopropofiryny. Tylko u 14 osób z wystawionych potwierdzono umiarkowanie surową anemię. Pracownicy narażeni narzekali na marazm, znużenie, senność, anoreksję, nudności, wymioty, ból brzucha, bóle i zawroty głowy, niekontrolowane nadmierne oddawanie moczu. Naprzemiennie można było obserwować sinię i bladość.

W układzie nerwowym zatruć TNT syngalizowane jest poprzez zawroty głowy, ból głowy, znużenie i senność. Ostrym przypadkom zatrucaenia TNT towarzyszy maiaczenie, konwuljsje, a nawet śpięczka. W niektórych przypadkach objawy stanowiły poważne uszkodzenia nerek, aż do niekontrolowanego oddawania moczu z towarzyszącym bólem w okolicy lędźwi. Ermakow i inni poddając badaniu 574 pracowników, aż u 122 stwierdzili zatrućie TNT [16]. Grupa chorych pracowników została poddana badaniu serca elektrokardiografię (EKG) i mózgu poprzez elektroencefalografię (EEG). Badania potwierdziły znaczne uszkodzenie układów naczyniowych i centralnych.

W ramach badań wykonanych przez Agencję Higieny Środowiskowej Armii Stanów Zjednoczonych (ang. U. S. Army Environmental Agency Hygiene) porównano skutki zdrowotne u osób wystawionych i nie wystawionych na działanie TNT w zakresie stężeń od 0,08 mg m⁻³ do 0,59 mg m⁻³ dla 8 h tygodnia pracy i nie zaobserwowano żadnych różnic [17]. W kolejnych badaniach poziom NDS dla TNT przyjęto na poziomie od 1,5 mg m⁻³ do 0,5 mg m⁻³. Rezultaty eksperymentów wykazały, że skóra absorpcja, a nie inhalacyjne drogi wnikania czynnika szkodliwego powinny być traktowane jako główne drogi przenikania TNT do organizmu.

Tokszyczność TNT w odniesieniu do zwierząt w znacznym stopniu zależy od gatunku. Dawki śmiertelne są różne dla różnych zwierząt. Badania przeprowadzono na małpach, psach, kotach, zajacach, świnkach morskich, szczurach i myszach. Badanie tokszyczności poprzez doustne dawki TNT w grupie rezerwów nie dały wymiernych wyników. Badania tokszyczności na psach obejmowało podawanie doustne TNT w formie kapsułek żelatynowych, ocieranie skóry i wtrysk podskórny w mieszanim z oliwą z oliwek. Wymioty wskutek bezpośredniego podrażenia żołądka zwierząt zaobserwowano w grupie psów nakarmionych TNT. Obserwowano depresję, biegunkę, osłabienie i nagromadzenie krwinek białych, sinię, żółciomocz, duszność oraz ślinienie. Szybkość, z którą tokszyczne symptomy ukazywały się oraz czas życia zależały były zarówno od ilości TNT podanego w dawce, częstości podawania i dróg absorpcji. Zmiany w wątrobie podczas autopspy zwierząt nie były porównywalne z tymi odnotowanymi w przypadku tokszycznej żółtaczki u ludzi. Indywidualna podatność zwierzęcia odgrywała znaczącą rolę. Często zwierzęta, które otrzymały dosyć dużą dawkę TNT nie miały widocznych symptomów zatrucia w porównaniu z grupą narażoną na stężenia od 50% do 75% mniejsze.

Anemia była objawem zaobserwowanym u wszystkich zwierząt. Zniszczenie krwi nastąpiło poprzez niszczenie krwinek czerwonych w konsekwencji doprowadzając do powiększonej fagocytocyzych komórek w śledzionie, wątrobie i szczepie kostnym (fagocytowej anemii). Wstrzyknięcie podskórne TNT dla kotów dziennej dawki 50 mg kg⁻¹ masy ciała okazało się dawką śmiertelną po czwartym dniu. Obecnie w kartach charakterystyki dawka LDL₉₀ podskórna dla kotów wynosi 200 mg kg⁻¹. Objawy zatrucaenia TNT u kotów były obserwowane poprzez rozrost śledziony i nagromadzenie się żelaza pochodzącego z białek w narządzie wątroby. Trotyl podawany doustnie lub ocierany o skórę świnkach morskich i królików w różnych dawkach spowodował uszkodzenia organizmu podobne do objawów u ludzi tzn.: spadek ilości komórek krwi w milimetrze sześciennym, spadek ilości hemoglobiny, wielobawność komórek, fagocytocyza czerwonych komórek krwi w śledzięcie, akumulacje hemosyderyny w wątrobie i śledzienie, pojawienie się żółci w uryńze, rozszerzenie szczupu kostnego i uszkodzeniu funkcji nerek. Trotyl podawany naskórnio i w okolicy oczu nie spowodował rozdrażnienia oka, a tylko czerwone przebarwienie skóry w okolicy oczu. Dla szczurów określono dawkę LD₉₀ podawaną doustnie jako (1010 ± 41) mg kg⁻¹ masy ciała dla samców i (820 ± 32) mg kg⁻¹ masy ciała samic [18]. Aktualnie w kartach charakterystyki dawka LD₉₀ doustna dla szczurów wynosi 607 mg kg⁻¹. Próba zmodyfikowanego testu Webstera była negatywna, gdyż obecność porfiryn w moczu nie wiązała się z obecnością TNT w uryńze. Chroniczne tokszyczne skutki TNT karólnych szczurów zróżnicowana dietą opartą o białko, węglowodany lub tłuszcze zaobserwowano w grupie szczurów, które otrzymywały tłustą dietę [19]. Kolor uryń był czerwony, samec
były osłabione i anemiczne oraz zauważalny był skokowy spadek wagi. Dostrzegono uszkodzenia wątroby poprzez znaczną martwicę mięśniowych komórek oraz spadek hemoglobiny, rozrost szpiku kostnego i żelazicę śledziony.

W przypadku myszy dawka LD_{50} podawana doustnie to (1014 ± 52) mg kg⁻¹ masy ciała samców i (1009 ± 54) mg kg⁻¹ masy ciała samic. Obecnie w kartach charakterystyki dawka LD_{50} doustna dla myszy wynosi 660 mg kg⁻¹.

W badaniach przeprowadzonych na szczurach karmionych codziennie dawką 0,15 mg kg⁻¹ TNT przez 120 dni nie udowodniono działania rakotwórczego [19]. Badania poprzez aerozolowe wystawienie śwink, szczurów i myszy na TNT nie potwierdziły nowotworowego uszkodzenia płuc [20]. Wyniki badań Gesheva i Kinceva [21] przeprowadzonych na szczurach narażonych na 30% roztwór TNT w lanolinie podawanej pięć razy w tygodniu wykazały chromosomowe zmiany strukturalne, które mogą powodować anomalie u przyszłych pokoleń.

Szereg badań przeprowadzono na zwierzętach i ludziach w celu wyizolowania identyfikacji metabolitów TNT. Jako metody identyfikacji stosowano LC/MS, GC-ECD, metody spektroskopowe, reakcje barwne oraz TLC, wykorzystano także różnice w rozpuszczalności związaków oraz metody dyfrakometrii rentgenowskiej. Wyniki eksperymentów zestawiono w tabeli 1.

Tab. 1. Metabolity TNT we krwi oraz urynie ludzi i zwierząt

<table>
<thead>
<tr>
<th>Człowiek</th>
<th>Szczur</th>
<th>Królik</th>
<th>Pies</th>
<th>Mysz</th>
<th>Świnka</th>
<th>Metoda identyfikacji</th>
</tr>
</thead>
<tbody>
<tr>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
</tr>
<tr>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
</tr>
<tr>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
</tr>
</tbody>
</table>

- **4-A**
- **2-A**
- **2,4-DA**
- **2,6-DA**
- **TNT**

- **4-A**
- **2-A**
- **2,4-DA**
- **2,6-DA**

4-A

<table>
<thead>
<tr>
<th>C złow nic</th>
<th>Szczur</th>
<th>Królik</th>
<th>Pies</th>
<th>Mysz</th>
<th>Świnka</th>
<th>Metoda identyfikacji</th>
</tr>
</thead>
<tbody>
<tr>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
</tr>
<tr>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
</tr>
<tr>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
</tr>
</tbody>
</table>

- **4-A**
- **2-A**
- **2,4-DA**
- **2,6-DA**
- **TNT**

<table>
<thead>
<tr>
<th>C złow nic</th>
<th>Szczur</th>
<th>Królik</th>
<th>Pies</th>
<th>Mysz</th>
<th>Świnka</th>
<th>Metoda identyfikacji</th>
</tr>
</thead>
<tbody>
<tr>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
</tr>
<tr>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
</tr>
<tr>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
</tr>
</tbody>
</table>

- **4-A**
- **2-A**
- **2,4-DA**
- **2,6-DA**
- **4-OHA**
- **1-DNB**

<table>
<thead>
<tr>
<th>C złow nic</th>
<th>Szczur</th>
<th>Królik</th>
<th>Pies</th>
<th>Mysz</th>
<th>Świnka</th>
<th>Metoda identyfikacji</th>
</tr>
</thead>
<tbody>
<tr>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
</tr>
<tr>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
</tr>
<tr>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
</tr>
</tbody>
</table>

- **4-A**
- **2-A**
- **2,4-DA**
- **2,6-DA**
- **4-OHA**
- **2-OHA**
- **TNT**

<table>
<thead>
<tr>
<th>C złow nic</th>
<th>Szczur</th>
<th>Królik</th>
<th>Pies</th>
<th>Mysz</th>
<th>Świnka</th>
<th>Metoda identyfikacji</th>
</tr>
</thead>
<tbody>
<tr>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
<td>uryna</td>
</tr>
<tr>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
<td>pokarm</td>
</tr>
<tr>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
<td>skóra</td>
</tr>
</tbody>
</table>

- **2-A**
- **4,6-DA**
- **2,4-DN**
- **4-OHA**
- **2-OHA**
- **TNT**

4-A – 4-amino-2,6-dinitrotoluenu; **2-A** – 2-amino-4,6-dinitrotoluenu; **2,4-DA** – 2,4-diamino-6-nitrotoluenu; **2,6-DA** – 2,6-diamino-4-nitrotoluenu; **4-OHA** – 4-hydroksyloamino-2,6 dinitrotoluenu; **2-OHA** – 2-hydroksyloamino-4,6-dinitrotoluenu; **KP** – kwas pikrynowy; **1-DNB** – 1,3-diamino-5-nitrobenzen
Na podstawie analizy wyników doświadczeń opracowano wstępny metaboliczny plan ścieżki TNT w organizmie ssaków, który ilustruje powyższy schemat.

2.2. Tetryl

Tetryl do lat pięćdziesiątych ubiegłego wieku był zaliczany do podstawowych kruszących MW, stosowanych jako ładunek wtórny w spłonkach pobudzających i do wyrobu pobudzaczy. Obecnie choroba skóry jest najczęściej spotykanym objawem chorób występujących po narażeniu człowieka na działanie tetrylu. Spośród 1258 pracowników narażonych na tetryl, 944 cierpiało na choroby skórne [22]. Zapalenie skóry pojawiało się pomiędzy drugim i trzecim tygodniem wystawienia na działanie czynnika. Złuszczający się i swędzący rumień jest pierwszym objawem choroby skóry, który ma miejsce prawie zawsze w okolicy twarzy, w rejonie gruczołów potu, wzdłuż linii nosa i ust oraz w kącikach ust. Następnie pojawiają się obrzęki oczu, które mogą w konsekwencji uniemożliwić otwieranie powiek od dwóch do trzech dni u pacjenta, a także czerwienie, wysypkę i pękanie skóry we wszystkich zanotowanych obszarach. W grupie pacjentów uczulonych na tetryl wysypka pojawiała się w dowolnym momencie na różnych partiach ciała, najczęściej jednak na twarzy, z tyłu szyi, na czołach, na uszach oraz na przegubach rąk [23]. Tetryl plami skórę rąk, szyi, twarzy oraz włosy na kolor żółty [24]. Kolor zmienia barwę na pomarańczową po wystawieniu na działanie światła słonecznego. Częste podrażnienia błony śluzowej występowało tylko w przypadku narażenia na tetryl rozdrobniony, rzadko w formie kulek. Dolegliwości okolic płuc i oskrzeli ustępowywały od 6 dni do 10 dni po przerwaniu wystawienia. Objawy żołądkowe to głównie nudności, anoreksja, wymioty, utrata apetytu i biegunka. Witkowski i inni [22] określili szereg symptomów wskazujących na systemowe zachorowanie wskutek narażenia na tetryl, są to:
bóle i zawroty głowy, znużenie, nerwowość, pocenie, bezsenność, depresja i apatia. Nie stwierdzili żadnych przypadków śmiertelnych z powodu wyżej opisanych anormalności. Badania pod kątem kancerogенноści przeprowadzili na grupie samiec szczurów. Nie potwierdzili wpływu tetrylu na piersi, stwierdzono zmiany żołądkowe tylko w jednym przypadku w grupie badanych.

2.3. Nitrogliceryna

Nitrogliceryna (NG) jest obok nitrocelulozy podstawowym składnikiem prochów nitroglicerynowych. Stosowana jest również w niektórych grupach materiałów wybuchowych górniczych: dynamitach, amonitach, barbarytach, karbonitach i metanitach. Drogami wchłaniania NG do organizmu człowieka jest Inhalacja oraz absorpcja skóry. Pierwsze objawy po narażeniu na działanie NG są zauważalne po upływie 1 h i spowodowane w głownej mierze redukcją ciśnienia krwi. W niektórych przypadkach poprzedza go kompletna lub częściowa ślepota. Bardzo często intensywnym i gwałtownym bólow i towarzyszy palpitacja serca. Następują pułsacyjne skurcze w okolicy tętnicy, które rozchodzą się po całym ciele. Obrazem zatrucia mogą towarzyszyć nudności, wymioty, osłabienie, bóle kolkowe okolicy brzucha, biegunka. W międzyczasie uderzenia serca i oddech słabną, pogłębia się sinica i osoba umiera z powodu uduszenia się w konsekwencji paraliżu układu oddechowego [25]. Zatrucie NG w przemysłe określane jest „chorobą poniedziałku”, gdyż tolerancja na NG może zanikać po 2 dniach od narażenia [26]. Objawami wystawienia po NG jest także senność, odrętwienie, bezsenność, omulenia, zawroty głowy, podeksytowanie, halucynacje i objawy maniakalne. Toksyczne skutki oddziaływania NG na organizm człowieka opisali Lange i inni [27]:

- dotkliwa odpowiedź – trwale wystawienie do NG powoduje rozszerzenie naczyń krwionośnych, tętnicze podciśnienie i zmniejszenie żylnego powrotu krwi oraz częstokurcz,
- chroniczna odpowiedź – po pewnym czasie obserwujemy wzrost w rozkurczowym ciśnieniu krwi, obniżenie pulsu i innych symptomów, to w konsekwencji prowadzi do ustalenia się nadcisnienia,
- wycofanie – zmiany wieńcowe lub nawet zawal może nastąpić dopóki NG nie będzie ponownie podana, okres zawężenia naczyń ustępuje po okresie od 96 h do 120 h.

Osoby cierpiące na nadcisnienie nie powinny pracować na stanowiskach, gdzie istnieje możliwość narażenia na NG.

2.4. Pentrynt

Pentrynt (PETN) aktualnie jest stosowany jako ładunek wtórny w zapalnikach oraz do wytwarzania lontu detonującego i plastycznych materiałów wybuchowych. Skutki oddziaływania pentryntu na fizioLogiczne funkcje organizmu zaniszczono pod względem skurczowego i rozkurczowego ciśnienia krwi oraz poprzez analizę pulsu zmierzony w spoczynku (EKG). Grupie badanych osób podano 65 mg PETN doustnie w kapsułkach. Zmiany fiziologiczne badano w odstępach (15 ± 20) min przez okres 3 h. Nie stwierdzono żadnych zmian fiziologicznych, także poziom azotanów we krwi nie przekroczył dopuszczalnych norm. Analiza absorpcji PETN na skórze człowieka wykazała, iż nie jest on czynnikiem drażniącym ani silnym czynnikiem uczulającym. Analaizy metabolicznej degradacji PETN we krwi człowieka wykazała, iż po 24 godzinach od narażenia w czerwonych komórkach krwi stwierdzono obecność 27,4% PE-tri-N (triazotan(V) pentaerytrytu), 64,4% PEDN (diazotan(V) pentaerytrytu) i 8,2% PEMN (monazotan(V) pentaaerytrytu) i PE (pentaerytrytu) [28]. W przypadku analizy uryny, głównym moczołowym metabolitem PETN był PEMN (57%), PE (40%), PEDN (3%). Szczury i myszy zdecydowanie szybciej przeprowadzają proces metabolizmu PETN, gdyż w ich urynie głównym składnikiem metabolicznym okazał się PE, podczas gdy ludzka uryna zawiera jako główny składnik PEMN [29]. Metaboliczne ścieżki PETN u ludzi i zwierząt można przedstawić schematem (2):

\[\text{PETN} \rightarrow \text{PE-tri-N} \rightarrow \text{PEDN} \rightarrow \text{PEMN} \rightarrow \text{PE} \]

(2)

Obecnie w kartach charakterystyki dawka LDLα doustna dla ludzi wynosi 1669 mg kg⁻¹, a dla myszy LD50 to 5000 mg kg⁻¹.
2.5. Nitroglikol

Nitroglikol (EGDN) aktualnie jest stosowany w niektórych grupach górniczych materiałów wybuchowych. Carmichael i Lieben analizując śmiertelny wpływ nitroglikolu na zdrowie i życie człowieka, stwierdzili liczne przypadki śmierci u osób narażonych na działanie EGDN po okresie kilku dni przerwy od wystawienia (choroba Monady) [30]. Najczęstszą przyczyną śmierci był atak serca. Objawy EGDN są zblizone do negatywnego wpływu NG na zdrowie człowieka. Absorpcję przez skórę EGDN określono na poziomie około 6,5 [mg (cm² h)]⁻¹, co jest istotne przy porównaniu tej wielkości do wartości NDS na poziomie 1 mg m⁻³ powietrza. Wystawienie na EGDN długodawni okazywa się być zdecydowanie bardziej niebezpieczne niż w przypadku inhalacji parami nitrogliceryny. Badania in vitro oraz in vivo przeprowadzone na zwierzętach umożliwiły określenie drogi metabolicznej nitroglikolu [31]. W pierwszej fazie następuje poprzez hydrolizę redukcja jednej z grup nitrowych i formuje się monozotan(V) glikolu etylenuowego i nieorganiczny azotan(III). Następnie nieorganiczny azotan(III) jest szybko utleniany we krwi, dlatego przypuszczać nie jest ostatecznym metabolitem ani in vitro ani in vivo.

2.6. Heksogen

Heksogen (RDX) aktualnie stosowany jest w wielu typach środków strażalowych. Kliniczne symptomy zatrucia RDX drogą pokarmową lub inhalacyjną pojawiają się w ciągu pół h do kilku h po wystawieniu. Objawy u chorych to zakłócanie, drgawki mięśni, anemcja, wymioty, konwulsje i zawroty głowy. Symptomy tj. bezsenność, niepokój, drażliwość utrzymywała się u osób narażonych przez kilka kolejnych dni. Wszystkie te zmiany były odwracalne. Analiza przypadku zatrucia RDX u 3-letniego dziecka, którego próbki biologiczne krwi, kalu, uryny oraz płynu mózgowo-rdzeniowego pobrano do badań, wykazała obecność związków określonych w poniższej tabeli 2.

<table>
<thead>
<tr>
<th>Czas po spożyciu [h]</th>
<th>Surowica krwi [mg dm⁻³]</th>
<th>Płyn mózgowo-rdzeniowy [mg dm⁻³]</th>
<th>Uryna [mg dm⁻³]</th>
<th>Kal [µg g⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>10,74</td>
<td>8,94</td>
<td>4,68</td>
<td>NS</td>
</tr>
<tr>
<td>48</td>
<td>3,56</td>
<td>NS</td>
<td>38,41</td>
<td>97,3</td>
</tr>
<tr>
<td>72</td>
<td>2,71</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>96</td>
<td>0,66</td>
<td>NS</td>
<td>0,6</td>
<td>4486</td>
</tr>
<tr>
<td>120</td>
<td>0,1</td>
<td>NS</td>
<td><0,2</td>
<td>NS</td>
</tr>
<tr>
<td>144</td>
<td>ND</td>
<td>NS</td>
<td>ND</td>
<td>114,5</td>
</tr>
</tbody>
</table>

ND – nie zidentyfikowano, NS – brak próby.

Maksymalne koncentracje RDX stwierdzono w ciągu 24 h dla RDX w surowicy, 48 h w urynie i 96 h w kalu. Graniczna wartość progowa NDS dla RDX wynosi 1,5 mg m⁻³ i jest to bezpieczny poziom wystawienia dla RDX [33]. Poziom ten jest zgodny z obecnymi danymi Amerykańskiej Agencji Bezpieczeństwa i Zdrowia w Pracy (ang. Occupational Safety and Health Administration). W Polsce najwyższe dopuszczalne stężenie określone w kartach charakterystyki to 1 mg m⁻³. Drogi wnikania RDX do organizmu to inhalacja, droga pokarmowa i prawdopodobnie absorpcja skórna. Analiza procesu biodegradacji RDX [34] wykazała obecność: heksahydro-1,3,5-trinitrozo-1,3,5-triazyny (TNX), heksahydro-1-nitrozo-3,5-dinitro-1,3,5-triazyny (MNX), heksahydro-1,3-dinitrozo-5-nitro-1,3,5-triazyny (DNX) oraz hydracyjny, 1,1-dimetylo-hydracyjny, 1,2-dimetylohydracyjny, formaldehydu i metanolu.

3. Podsumowanie

Omawianie w artykule materiały wybuchowe charakteryzują się zróżnicowaną toksycznością. Uwzględniając oddziaływanie materiałów wybuchowych na zdrowie człowieka w trzecim etapie analizy cyklu życia, należy
wziąć pod uwagę w większości przypadków ilościowe kategorie wpływu tj. śmierć z powodu wypadków przy pracy, straty roboczo-godzin z powodu wypadków przy pracy i chorób będących ich wynikiem oraz szeregii allergii związanych z absorpcją skórą. W analizach jakościowych kategorii wpływu należy wziąć pod uwagę potencjalną kancerogenność (np. trotylu), mutagenność i teratogenność materiałów wybuchowych, które mogą być składnikami górnicych środków strałowych.

Literatura

[18] Lee C.C., Mammalian toxicity of munition compounds. Phase 1. Acute oral toxicity, primary skin and eye irritation, dermal sensitization, and disposition and metabolism, Project No 3900-B (AD-B011150), Midwest Research Institute, Kansas City, 1975.
1941, 11, 509.

[27] Lange R.L. et al., Nonatheromatous ischemic heart disease following withdrawal from chronic industrial nitroglycerin exposure, Circulation 1972, 46, 666.

