Preparation and Properties of RDX-Nitrocellulose Microspheres

Xiaofeng SHI,* Jingyu WANG, Xiaodong LI

Chemical Industry and Ecology Institute, North University of China, Shanxi, 030051 Taiyuan, P. R. China
*E-mail: xiaofeng_shi1987@163.com

Abstract: A new insensitive explosive based on RDX and with Nitrocellulose (NC) as binder has been prepared using a flash vaporization process. Scanning electron microscopy was used to characterize the morphology and particle size of the resulting RDX-NC microspheres. X-ray photoelectron spectroscopy, Differential Scanning Calorimetry, impact sensitivity, vacuum stability and burning rate of raw RDX, RDX-NC and RDX-1 were also used to characterize the explosive. The RDX-NC microspheres were found to have a fibrous surface. The microspheres ranged in size from 0.5 μm to 4 μm. The NC formed a coat on the surface of the RDX. The activation energies of raw RDX, RDX-1 and RDX-NC were found to be 200.8 kJ·mol⁻¹, 183.9 kJ·mol⁻¹ and 187.2 kJ·mol⁻¹, respectively. The drop heights of raw RDX, RDX-1 and RDX-NC were found to be 21.3 cm, 51.7 cm and 82.9 cm, respectively. The friction sensitivity of RDX-NC was lower than that of raw RDX and RDX-1. In the vacuum stability test, the volumes of evolved gas from raw RDX, RDX-1 and RDX-NC were 0.12 mL·g⁻¹, 0.12 mL·g⁻¹, and 0.09 mL·g⁻¹, respectively. The burning rates of RDX-NC-based propellants were higher than that of RDX-1 and raw RDX based propellants at 5-15 MPa. The burning rate pressure exponent of RDX-NC based propellants is 0.9929 at 40-200 MPa.

Keywords: RDX, nitrocellulose, flash vaporization process, thermal stability

Nomenclature List

- $H_{50}$ = 50% explosion probability,
- $S$ = standard deviation,
- $\beta_i$ = heating rate in K·min⁻¹,
- $T_{pi}$ = the temperature of the exothermic peak at $\beta_i$ heating rate in K,
- $E$ = the activation energy in J·mol⁻¹,
- $A$ = the pre-exponential factor,
- $R$ = the gas constant, 8.314 J·mol⁻¹·K⁻¹.
1 Introduction

There is a growing requirement for the energy of composite modified double-base (CMDB) propellants to be increased [1, 2]. The most common approach to increase the energy of CMDBs is by the addition of nitramine explosives and RDX is the one commonly used to do this [3-6]. But adding RDX produces many problems, such as higher mechanical sensitivity and worse mechanical properties [7-10]. Previous research has shown that reducing the size of solid filler particles can solve these problems and also enhance the burning rate of propellants [11-14]. In addition, the mechanical sensitivity of CMDBs can be decreased if the particles coated with some binders [15-18]. Nitrocellulose (NC) is necessary for the energy and mechanical properties of double-base propellants. Using NC as a binder can avoid mixing unnecessary impurities into the propellants. Spheroidization is another way to solve the problem of high mechanical sensitivity [19-21].

In our previous study, we prepared a type of spherical HMX/NC nano-composites. NC was not coated onto the surface of the HMX. Instead, the HMX nano-particles and NC were found to combine well [22]. But the vacuum stability of that mix was not good. In the research reported in the present paper, we prepared pure RDX (labelled as RDX-1) and RDX-NC microspheres (labelled as RDX-NC) by a flash vaporization process. NC was coated onto the surface of the RDX. We then characterized and analyzed the sample properties in detail.

2 Experimental Section

2.1 Preparation of RDX-NC Microspheres

10 g of RDX (provided by the Gansu Ying Guang Chemical Industry Group Co., Ltd.), which particle size and morphology are shown in Figure 2a, and 0.5 g of NC (provided by the China North Chemical Industries Group Co., Ltd.) were dissolved at 35 °C in 200 g of acetone (purchased from the Tianjin TianDa Chemicals Co., Ltd.) to form a uniform co-solution by sonication. As is shown in Figure 1, nitrogen gas was heated using an electrical heater (labelled a). The heating temperature and flow rate of the nitrogen were set as 55 °C and 430 L·h⁻¹, respectively. The RDX solution and hot nitrogen were then sprayed from a nozzle (labelled b) and dried to produce microspheres. The flow rate of the feed solution was set to 10 mL·min⁻¹. When the hot nitrogen and solution had gone through a cyclone separator (labelled c), the dried particles were collected in an electrically grounded glass collection vessel (labelled d) and the
gas exhausted to a recovery system (labelled e).

![Flow chart of flash vaporization process set up.](image)

**Figure 1.** Flow chart of flash vaporization process set up.

### 2.2 Characterization

The size and morphology of the samples were surveyed using an S-4800 scanning electron microscope (SEM) (Hitachi Ltd., Japan). Axis Ultra Imaging Photoelectron Spectrometer (Kratos Analytical Ltd., England) was used to contrast the surface elements of the raw RDX, RDX-1 and RDX-NC nanocomposites by X-ray photoelectron spectroscopy (XPS). Differential scanning calorimetry (DSC) experiments were conducted in a N$_2$ atmosphere using a Setaram DSC131 instrument (Setaram instrumentation Co., France). The test conditions were: sample mass, 0.7 mg; N$_2$ flow rate, 15 mL·min$^{-1}$ and sample heating rates, 20, 10 and 5 K·min$^{-1}$. The impact sensitivities of samples were determined at room temperature using an Explosive Research Laboratory (ERL) type 12 drop hammer apparatus with a sample mass of 35 ± 1 mg and a drop weight of 5 ± 0.002 kg. Two groups of each sample and 25 of the same samples from each group were tested. The results are reported in terms of the critical drop-height of 50% explosion probability ($H_{50}$) and the standard deviation ($S$). Vacuum Stability was tested by a Stabil 21 dynamic vacuum stability apparatus. Standard techniques were used to measure the burning rate. The initial temperature was 298 K.
3 Results and Discussion

3.1 Scanning Electron Microscope Characterization

Figure 2. SEM images of (a) raw RDX and (b-d) RDX-NC microspheres at different magnifications.

Figure 2 shows SEM micrographs of raw RDX and RDX-NC microspheres. As is shown in Figure 2a, the raw RDX in the size range from 50 μm to 150 μm is blocky. Figure 2b shows that the particle size of RDX-NC ranges from 0.5 μm to 4 μm. The samples were microspherical, with a smooth (see Figure 2c) yet fibrous surface (see Figure 2d).

3.2 X-ray photoelectron spectroscopy characterization
The distribution of raw RDX and RDX-NC surface elements were characterized by XPS. The results are shown in Table 1.
Table 1. Distribution of raw RDX and RDX-NC surface elements

<table>
<thead>
<tr>
<th>Samples</th>
<th>Surface elements [%]</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O 1s</td>
<td>N 1s</td>
<td>C 1s</td>
<td></td>
</tr>
<tr>
<td>Raw RDX</td>
<td>36.07</td>
<td>39.80</td>
<td>24.13</td>
<td></td>
</tr>
<tr>
<td>RDX-NC</td>
<td>34.80</td>
<td>20.32</td>
<td>44.88</td>
<td></td>
</tr>
</tbody>
</table>

As is shown in Table 1, the “O” content of raw RDX and RDX-NC is similar. The “N” content of RDX-NC decreases sharply while the “C” content increases significantly compared with raw RDX. It can be explained that the “N” content of NC is less than that of raw RDX, and the “C” content of NC is greater than that of raw RDX. The original surface distribution of elements is changed when raw RDX is coated with NC.

### 3.3 Thermal decomposition characteristics

Figure 3 shows DSC curves of raw RDX, RDX-1 and RDX-NC at heating rates of (a) 20 K·min⁻¹, (b) 10 K·min⁻¹, and (c) 5 K·min⁻¹.

Figure 3 shows DSC curves of raw RDX, and RDX-1 and RDX-NC microspheres at 20 K·min⁻¹, 10 K·min⁻¹ and 5 K·min⁻¹ heating rates. There is an endothermic peak at 201~203 °C in all the DSC curves in Figure 3. These
curves show that the RDX began to melt at 201~203 °C. For the same sample, the exothermic peak temperatures are lower at slower heating rates. The thermal decomposition kinetics parameters of raw RDX, and the RDX-1 and RDX-NC microspheres can be calculated using the Kissinger method (Equation 1) [23].

\[
\ln \frac{\beta_i}{T_{pi}^2} = \ln \frac{AR}{E} - \frac{E}{RT_{pi}}
\]

(1)

![Figure 4. Kissinger’s plot of raw RDX, RDX-1 and RDX-NC microspheres.](image)

As is shown in Figure 4, a straight line is obtained when the values of \( \ln(\beta_i/T_{pi}^2) \) are plotted against \( 1/T_{pi} \). The activation energy can be calculated from the slope \(-E/R\). The pre-exponential factor can be calculated from the intercept \([\ln(AR/E)]\). The results show that the activation energies of raw RDX, RDX-1 and RDX-NC microspheres are 200.8 ± 17.0 kJ·mol\(^{-1}\), 183.9 ± 0.5 kJ·mol\(^{-1}\) and 187.2 ± 11.4 kJ·mol\(^{-1}\), respectively. Compared with raw RDX, the activation energies of RDX-1 and RDX-NC are lower by about 16.9 kJ·mol\(^{-1}\) and 13.6 kJ·mol\(^{-1}\), respectively.

3.4 Impact sensitivity

From Table 2, it can be seen that the drop height of RDX-1 is higher than that of raw RDX (two repeat experiments were performed). The drop height of RDX-NC is much higher than that of raw RDX and RDX-1. These results prove that the
impact sensitivity of RDX-1 is lower than that of raw RDX and that the addition of NC can reduce the impact sensitivity of RDX. Our drop-height measurements compare favorably with those reported by Armstrong [24].

3.5 Vacuum stability test
Vacuum stabilities of samples were tested by keeping samples at 100 °C for 48 hours under vacuum.

Table 2. Impact sensitivity and vacuum stability of raw RDX, RDX-1 and RDX-NC

<table>
<thead>
<tr>
<th>Samples</th>
<th>Impact sensitivity, $H_{50}$ [cm]</th>
<th>Vacuum stability test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experiment 1 (S)</td>
<td>Experiment 2 (S)</td>
</tr>
<tr>
<td>Raw RDX</td>
<td>20.2 (0.06)</td>
<td>22.4 (0.03)</td>
</tr>
<tr>
<td>RDX-1</td>
<td>50.5 (0.02)</td>
<td>52.8 (0.05)</td>
</tr>
<tr>
<td>RDX-NC</td>
<td>80.3 (0.04)</td>
<td>85.4 (0.07)</td>
</tr>
</tbody>
</table>

The volume of gas released from 1.0 g samples is much less than 2.0 mL at 100 °C showing that the raw RDX, RDX-1 and RDX-NC are all relatively stable and safe during usage and storage according to the Standard of Vacuum Stability [25]. The gas volume evolved from RDX-NC is lower than that from raw RDX and RDX-1. This can be explained as due to the NC (which was coated onto the surface of RDX) partly eliminating the active decomposition reaction centers of RDX. Therefore, the thermal stability of RDX-NC is better than that of both raw RDX and RDX-1.

3.6 Friction sensitivity

Table 3. Friction sensitivities of raw RDX, RDX-1 and RDX-NC

<table>
<thead>
<tr>
<th>Samples</th>
<th>Friction sensitivity [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw RDX</td>
<td>88</td>
</tr>
<tr>
<td>RDX-1</td>
<td>16</td>
</tr>
<tr>
<td>RDX-NC</td>
<td>9</td>
</tr>
</tbody>
</table>

As is shown in Table 3, the friction sensitivity of RDX-1 is lower than that of raw RDX. Also the friction sensitivity of RDX-NC is lower than that
of RDX-1 and raw RDX. This proves that the addition of NC can reduce the friction sensitivity of RDX.

### 3.7 Burning rate

In the burning rate tests, the formulation of RDX-CMDB propellants is: raw RDX/RDX-1/RDX-NC (30%); NC (32%); NG/DINA (36%); other materials (2%). The results are shown in Table 4.

**Table 4.** Burning rate of RDX-CMDB propellants at high pressure (pressure range: 5-15 MPa)

<table>
<thead>
<tr>
<th>Samples</th>
<th>Fillers</th>
<th>Burning rate, ( u ) [mm·s(^{-1})] at different pressures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5 MPa</td>
</tr>
<tr>
<td>1</td>
<td>Raw RDX</td>
<td>4.23</td>
</tr>
<tr>
<td>2</td>
<td>RDX-1</td>
<td>5.01</td>
</tr>
<tr>
<td>3</td>
<td>RDX-NC</td>
<td>5.29</td>
</tr>
</tbody>
</table>

Table 4 shows the effect of propellant composition on burning rate. The burning rate of samples 2 and 3 increased more over the pressure range 5~15 MPa compared with sample 1. The burning rate of sample 3 was faster than that of sample 2. This proves that RDX-1 and RDX-NC all can enhance the burning rate of RDX based propellants. This effect is more obvious for RDX-NC than for RDX-1.

The burning rate pressure exponent of RDX-NC based propellants was also studied. The result is shown in Table 5.

**Table 5.** Burning rate pressure exponent of RDX-NC based propellants at different pressure intervals

<table>
<thead>
<tr>
<th>Sample</th>
<th>( P ) [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDX/NC based propellants</td>
<td>40-80</td>
</tr>
<tr>
<td></td>
<td>80-120</td>
</tr>
<tr>
<td></td>
<td>120-200</td>
</tr>
<tr>
<td></td>
<td>40-200</td>
</tr>
<tr>
<td>RDX/NC based propellants</td>
<td>1.2313</td>
</tr>
<tr>
<td></td>
<td>1.1165</td>
</tr>
<tr>
<td></td>
<td>0.9712</td>
</tr>
<tr>
<td></td>
<td>0.9929</td>
</tr>
</tbody>
</table>

From Table 5, it can be seen that the burning rate pressure exponent of RDX-NC based propellants decreases as the pressure increases. This shows that the effect of pressure change on the burning rate will be small when the pressure is high.
4 Conclusions

An RDX-based microsphere, which was coated with NC, was prepared successfully by a flash vaporization process. The microspheres were 0.5 μm to 4 μm in size and the surfaces exhibited a fibrous shape. Pure RDX (RDX-1) was also prepared by the same process. The proportion of elements in the surface of RDX-NC was very different to that of raw RDX. This is because of the NC coating on the surface of RDX which changes the proportion of surface elements originally present. The activation energy of RDX-NC is lower than that of raw RDX but a little higher than that of RDX-1. The impact sensitivities of RDX-1 and RDX-NC were lower than that of the raw RDX because of a greater drop height. The friction sensitivity of RDX-NC was lower than that of raw RDX and RDX-1. The thermal stabilities of RDX-1 and raw RDX were basically similar. The thermal stability of RDX-NC was better than that of the other two samples. The burning rate of RDX-NC microspheres based propellants was higher than that of RDX-1 and raw RDX based propellants. The burning rate pressure exponent of RDX-NC based propellants is 0.9929 at 40-200 MPa. These combined properties suggest that RDX-NC microspheres are an insensitive spherical explosive with great potential in solid propellants.

References

[7] Li T., Hua C., Li Q., Shock Sensitivity of Pressed RDX-Based Plastic Bonded Explosives under Short-Duration and High-Pressure Impact Tests, Propellants


