Kinetic Study of the Thermal Decomposition of Potassium Chlorate Using the Non-isothermal TG/DSC Technique

Mohsen RA VANBOD*, Hamid Reza POUR TEDAL**, Mohammad K. AMINI, Reza EBADPOUR

Faculty of Applied Chemistry,
Malek-ashtar University of Technology, Shahin-Shahr, Iran
E-mail: **hr_pouretedal@mut-es.ac.ir, *mravanbod@mut-es.ac.ir

Abstract: The non-isothermal TG/DSC technique has been used to study the kinetic triplet of the thermal decomposition of potassium chlorate at different heating rates (5, 10, 15 and 20 °C·min⁻¹). The DSC results showed two consecutive broad exothermic peaks after melting. The first peak contains a shoulder indicating the presence of at least two processes. The overlapped peaks were resolved by a peak fitting procedure, and the three resolved peaks were used for evaluation of the kinetic triplet for each step. The TG results also showed two consecutive mass losses after melting. The kinetics of the mass loss processes were studied using resolved DTG peaks. The activation energies were calculated using the KAS model-free method. The pre-exponential factor and the best kinetic model for each step were determined by means of the compensation effect, and the selected models were confirmed by the nonlinear model fitting method. The average activation energies obtained from the DSC results were 237.3, 293.8, and 231.3 kJ·mol⁻¹ for the three consecutive steps of thermal decomposition of KClO₃. The activation energies were 231.0 and 239.9 kJ·mol⁻¹ for the first and second mass loss steps. The Avrami-Erofeev of Aₓ/y with the function of g(α) = [−ln(1−α)]x/y (x/y = 5/4 and 3/2) was the most probable model for describing the reaction steps.

Keywords: potassium chlorate, thermal decomposition, kinetic triplet, non-isothermal TG/DSC
1 Introduction

Oxidizers are usually oxygen rich ionic solids that are used in pyrotechnic and propellant compositions to facilitate the process of ignition by producing oxygen [1]. Potassium chlorate (KClO$_3$) with 39.2 wt.% oxygen content is one of the most reactive and certainly the most controversial of the common oxidizers in many pyrotechnic and propellant compositions [2]. Due to its excellent properties such as low melting point, low energy content and combustion behaviour, KClO$_3$ has been widely used in various energetic material compositions [3-7]. Also, one of the main applications of KClO$_3$ is in the production of white and coloured smokes [8, 9]. Compared with KClO$_4$, for which there are many reports on its decomposition, KClO$_3$ has not been so widely studied, nor has its decomposition behaviour been fully explained, probably because of difficulty in following its decomposition by different thermal analytical techniques [10, 11].

It has been reported that potassium perchlorate and potassium chloride are formed during the decomposition of KClO$_3$ at temperatures above its melting point. Potassium perchlorate is, in turn, decomposed to yield potassium chloride and oxygen [12, 13]. In the process of the thermal decomposition of KClO$_3$, absorption of heat increases the diffusion speed and vibration amplitude of the crystals, causing cleavage and reformation of the Cl–O bonds in KClO$_3$ with subsequent formation of stable KClO$_4$. Following this transformation, KClO$_4$ is decomposed by releasing all of its oxygen to form potassium chloride [14]. The formation of ClO$^-$ and ClO$_2^-$ anions, and their corresponding radicals, has also been suggested for the thermal decomposition of KClO$_3$ under gamma irradiation [15].

To the best of the authors’ knowledge, no study has yet been reported on the kinetic triplets for the individual steps of the three-step decomposition process of KClO$_3$. In this regard, this study is complementary to the previous studies on the thermal decomposition of KClO$_3$. The decomposition behaviour of KClO$_3$ was studied by means of differential scanning calorimetry (DSC) and thermogravimetry (TG) under a nitrogen atmosphere. We determined the kinetic triplets, including the activation energy, the Arrhenius constant and the decomposition reaction model for each step of the three-step process of KClO$_3$ decomposition, after resolving the overlapped DSC and DTG thermograms.

The ICTAC kinetic committee recommendations [16] were used for reliable estimation of the kinetic parameters. The activation energies were calculated by the Kissinger-Akahira-Sunose (KAS) method based on DSC and TG data at different heating rates after resolution of the overlapped peaks. The compensation
effect method was then used for accurate determination of the reaction model and pre-exponential factor.

2 Experimental

Analytical grade potassium chlorate (purity > 99.9%) was purchased from Merck Company. The KClO$_3$ sample was ground in an agate mortar to produce a fine powder and then dried at 70 °C for 2 h. The particle size distribution of the KClO$_3$ powder, with a median (D_{50}) of 29.7 µm, is shown in Figure 1.

![Particle size distribution of potassium chlorate ($D_{50} = 29.7$ µm).](image)

The TG-DSC measurements were carried out using a Perkin Elmer simultaneous thermal analyzer model STA 6000 (USA). Alumina sample vessels were used (70 µL volume) with alumina powder as the reference material. A nitrogen atmosphere was applied during the analysis (flow rate of 50 mL·min$^{-1}$). For the kinetic study of the reactions, thermal analysis experiments were performed at different heating rates of 5, 10, 15 and 20 °C·min$^{-1}$. In each experiment, approximately 15 mg of KClO$_3$ was taken and heated from ambient temperature (25 °C) to 900 °C.

The particle size distribution measurements were performed using a laser particle size analyzer (FRITSCH, model Analystte 22, Micro Tec Plus).

The overlapped peaks in the DSC and DTG (differential thermogravimetry) thermograms were resolved using Peakfit v4.12 software.
3 Results and Discussion

3.1 DSC thermograms of KClO₃

Figure 2 shows the DSC thermograms of KClO₃ obtained at different heating rates (5, 10, 15, and 20 °C·min⁻¹) under a nitrogen atmosphere. The DSC thermograms show two sharp endothermic peaks and two broad successive exothermic peaks. The first endothermic peak observed around 356 °C can be assigned to melting of potassium chlorate and the second endothermic peak around 770 °C is related to melting of potassium chloride [2, 7]. The two broad consecutive exothermic peaks observed above 500 °C are due to the decomposition of KClO₃ [10]. The first exothermic peak which appeared as a shoulder at all of the heating rates of 5, 10, 15, and 20 °C·min⁻¹ and had maximum peak temperatures of 549.7, 563.6, 571.3, and 575.5 °C, respectively, is related to the following combined reactions [17]:

\[2\text{KClO}_3 \rightarrow 2\text{KCl} + 3\text{O}_2 \]
\[4\text{KClO}_3 \rightarrow 3\text{KClO}_4 + \text{KCl} \]

The second exothermic peak in the DSC thermograms in Figure 2 belongs to the decomposition of KClO₄ according to reaction (III), which was observed at maximum peak temperatures of 586.7, 602.9, 616.3, and 621.6 °C, at heating rates of 5, 10, 15, and 20 °C·min⁻¹, respectively.
Kinetic Study of the Thermal Decomposition of Potassium Chlorate...

\[\text{KClO}_4 \rightarrow \text{KCl} + 2\text{O}_2 \]

(III)

As seen, all of the peaks shift to higher temperature with increasing heating rate, and is the basis for the kinetic calculations in thermal analysis methods.

Figure 3. The three resolved peaks after curve fitting of the DSC data at a heating rate of 15 °C·min\(^{-1}\).

Table 1. The characteristics of the DSC thermograms for three consecutive steps of KClO\(_3\) decomposition at different heating rates (5-20 °C·min\(^{-1}\))

<table>
<thead>
<tr>
<th>(\beta) [°C·min(^{-1})]</th>
<th>(r^2)</th>
<th>First step</th>
<th></th>
<th>Second step</th>
<th></th>
<th>Third step</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(T_{\text{onset1}}) [°C]</td>
<td>(T_p1) [°C]</td>
<td>(T_{\text{end1}}) [°C]</td>
<td>(T_{\text{onset2}}) [°C]</td>
<td>(T_p2) [°C]</td>
<td>(T_{\text{end2}}) [°C]</td>
<td>(T_{\text{onset3}}) [°C]</td>
</tr>
<tr>
<td>5</td>
<td>0.964</td>
<td>467</td>
<td>518.4</td>
<td>570</td>
<td>510</td>
<td>549.7</td>
<td>589</td>
</tr>
<tr>
<td>10</td>
<td>0.966</td>
<td>482</td>
<td>533.6</td>
<td>587</td>
<td>524</td>
<td>563.6</td>
<td>603</td>
</tr>
<tr>
<td>15</td>
<td>0.994</td>
<td>494</td>
<td>542.7</td>
<td>591</td>
<td>535</td>
<td>571.3</td>
<td>607</td>
</tr>
<tr>
<td>20</td>
<td>0.996</td>
<td>503</td>
<td>548.1</td>
<td>593</td>
<td>540</td>
<td>575.5</td>
<td>611</td>
</tr>
</tbody>
</table>

\(r^2\): nonlinear regression coefficient between experiment and predicted data.

In order to evaluate the kinetic triplet for the consecutive decomposition reactions, the overlapped peaks of the DSC thermograms at different heating
rates (5, 10, 15, and 20 °C·min⁻¹) were resolved by the peak fitting procedure. The thermogram was best fitted into three resolved peaks, which provided evidence for a three-step decomposition mechanism. A typical curve fitted DSC at a heating rate of 15 °C·min⁻¹ is shown in Figure 3, and the overall results at different heating rates are presented in Table 1.

3.2 TG thermograms of KClO₃
The TG and DTG thermograms of KClO₃ at three heating rates of 10, 15, and 20 °C·min⁻¹ under a nitrogen atmosphere are shown in Figure 4. As for the DSC results, the TG thermograms also shift to higher temperatures with increasing heating rate. The decomposition of potassium chlorate shows two consecutive mass losses with a total mass reduction of about 40%, which is in agreement with the proposed mechanisms mentioned previously [17]. The first minor mass loss is related to reaction (I) and the major (second) mass loss is due to reaction (III). The DTG peaks were clearly resolved by the curve fitting procedure. A typical curve fitted DTG at a heating rate of 15 °C·min⁻¹ is presented in Figure 5. The results for the two step mass loss and the contribution of each step at different heating rates (10, 15 and 20 °C·min⁻¹) are presented in Table 2. As seen, the contribution of the first mass loss, reaction (I), increases with increasing heating rate (16.8, 19.4, and 22.4% mass loss, for heating rates of 10, 15, and 20 °C·min⁻¹, respectively). By contrast, the contribution of the second mass loss, reaction (III) or (II), decreases at higher heating rates. Consequently, the direct decomposition of KClO₃ to KCl and O₂ gas, reaction (I), is enhanced with increasing heating rate.
Figure 4. The experimental TG (a) and DTG (b) thermograms for the decomposition of KClO₃ at different heating rates (10, 15, and 20 °C·min⁻¹) under N₂ atmosphere.

Figure 5. The two resolved peaks after curve fitting of the DTG data at a heating rate of 15 °C·min⁻¹.
Table 2. The characteristics of the DTG thermograms for the two step mass loss during KClO$_3$ decomposition at different heating rates (10, 15, and 20 °C·min$^{-1}$)

<table>
<thead>
<tr>
<th>β [°C·min$^{-1}$]</th>
<th>*r^2</th>
<th>First mass loss</th>
<th>Second mass loss</th>
<th>Relative peak area [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>T_{onset1} [°C]</td>
<td>T_{p1} [°C]</td>
<td>T_{end1} [°C]</td>
</tr>
<tr>
<td>10</td>
<td>0.995</td>
<td>485</td>
<td>540.6</td>
<td>595</td>
</tr>
<tr>
<td>15</td>
<td>0.996</td>
<td>493</td>
<td>550.3</td>
<td>608</td>
</tr>
<tr>
<td>20</td>
<td>0.997</td>
<td>501</td>
<td>556.4</td>
<td>612</td>
</tr>
</tbody>
</table>

*r^2: nonlinear regression coefficient between experiment and predicted data.

3.3 Kinetics of solid-state reactions

The rate of kinetic processes in the solid-state is generally a function of temperature and conversion, which can be described by the following equation:

$$\frac{d\alpha}{dt} = k(T) \cdot f(\alpha)$$ \hspace{1cm} (1)

where α is the conversion fraction, t is time, T is absolute temperature (K) and $f(\alpha)$ is the reaction model function depending on the particular decomposition mechanism. The temperature function $k(T)$ is the “rate constant” which represents the temperature dependence of the reaction rate. The parameter $k(T)$ is usually represented by the Arrhenius relationship:

$$k(T) = A \cdot \exp\left[\frac{-E_a}{RT}\right]$$ \hspace{1cm} (2)

where E_a is the activation energy as a function of α (kJ·mol$^{-1}$), R is the universal gas constant (8.314 J·mol$^{-1}$·K$^{-1}$), A (min$^{-1}$) is the pre-exponential (frequency) factor which is assumed to be independent of temperature and gives an idea of the association tendency of the reacting molecules [18, 19].

The activation energy E_a, the pre-exponential factor in the Arrhenius equation A, and the function of the reaction progress $f(\alpha)$ which is dependent on the decomposition mechanism, are called the kinetic triplet. The kinetic triplet is required for prediction of the thermal stability of the materials under various applied temperature conditions [20] and is needed to provide a mathematical description of the process [21].
Figure 6. Individual contributions of the three decomposition steps of KClO$_3$ to the total conversion at a heating rate of 15 °C·min$^{-1}$.

Figure 7. Individual contributions of the two step mass losses of KClO$_3$ to the total conversion at a heating rate of 15 °C·min$^{-1}$.

In multi-step mechanisms when the reaction profile demonstrates well separated steps under constant heating rate conditions, it is a good idea to separate the steps entirely (e.g., by using peak separation methods) and to analyze their kinetics individually [16]. Figure 6 shows the individual contributions of the three
decomposition steps of KClO$_3$ to the total conversion for the DSC thermogram at a heating rate of 15 °C·min$^{-1}$. In addition, the individual contributions of the two mass loss steps of KClO$_3$ decomposition to the total conversion at a heating rate of 15 °C·min$^{-1}$ is presented in Figure 7. Obviously, in all reaction profiles, the conversion fractions increase with temperature, and in adjacent α-T thermograms, the value of α_2 begins to be significant when the value of α_1 is already high. For example, as shown in Figure 7, for $\alpha_1 > 90\%$, α_2 is < 10% (about 3%) at 577 °C. In this case, as a good approximation, the decomposition of potassium chlorate in a nitrogen atmosphere can be modelled considering the reaction of each step as an independent process [22].

3.3.1 Calculation of the activation energy by a model-free isoconversional method

The KAS method [23, 24] was used to determine the activation energy of the KClO$_3$ decomposition reactions based on the conversion fractions of the DSC and DTG peak areas. This method can be expressed by the following equation:

$$\ln\left(\frac{\beta}{T^2}\right) = \text{Const} - \left(\frac{E_a}{RT}\right)$$

(3)

According to the above equation, plots of $\ln(\beta/T^2)$ versus $1/T$ corresponding to different extents of the conversion, α, can be obtained by linear regression using least squares methods. The activation energy E_a can be evaluated from the slope of the straight line which gives the best regression coefficients (R^2). The results of the analysis by the KAS method from four DSC measurements and three DTG measurements are presented in Figures 8 and 9, respectively. The activation energies were calculated at different heating rates via these methods for different α values in the range 0.1-0.9. The variations in the activation energies versus the conversion fraction for each of the three decomposition steps in the DSC and the two mass decreases in the DTG by the KAS method are shown in Figures 10 and 11, respectively. The average and standard deviation of the activation energies calculated by the KAS method are given in Table 3.

Table 3.	The averaged activation energies (E_a, kJ·mol$^{-1}$) and their standard deviations for the decomposition of KClO$_3$ obtained by the KAS method	
	DSC [kJ·mol$^{-1}$]	DTG [kJ·mol$^{-1}$]
First step	237.3 ± 26.3	231.0 ± 7.6
Second step	293.8 ± 18.7	239.9 ± 5.3
Third step	231.3 ± 10.5	

Figure 8. KAS plots for the thermal decomposition of KClO₃ at four heating rates and various conversions (α = 0.1-0.9, at 0.1 increments) from the DSC data.
It is clear from Table 3 that there is reasonable agreement between the activation energies of the first step in the DSC and the first mass loss in the DTG, related to reaction (I). Also the activation energies for the third DSC step and the second mass loss, related to reaction (III), are close to each other and in fact, they are not significantly different statistically. The activation energies for the decomposition of KClO₄ in the present work are in agreement with those reported by Lee et al. (231-269 kJ·mol⁻¹)[25]. The results strongly verify that the thermal decomposition of KClO₃ occurs according to the suggested three-step mechanism.

Figure 9. KAS plots for the thermal decomposition of KClO₃ at three heating rates and various conversions (α = 0.1-0.9, at 0.1 increments) from the DTG data.
3.3.2. **Determination of the kinetic triplet by a model-fitting method**

The kinetic parameters strongly depend on the selection of a proper mechanism function for the process. Therefore, the determination of the most probable mechanism function is highly essential [26]. It was demonstrated that the thermal decomposition of potassium chlorate occurs by a three step mechanism and two mass loss steps; these steps are completely independent. In multi-step reactions, because of the obvious differences in the reaction profiles associated with the major types of the common reaction models (e.g. accelerating, decelerating, and sigmoidal), determining the appropriate model type is relatively simple [16].
In order to select the reaction model for the individual steps, thirty different kinetic functions [27] of the common models in solid-state reactions (listed in Table 4) were tested with the two model fitting methods including the differential Equation 4 and the integral Equation 5 as follows [28]:

Differential method:

\[
\ln \left[\frac{d\alpha}{dT} \frac{E_a}{f(\alpha)} \frac{E_a(T-T_0)}{RT^2+1} \right] = -\frac{E_a}{RT} + \ln \left[\frac{A}{\beta} \right]
\]

(4)

Integral equation:

\[
\frac{g(\alpha)}{T-T_0} = -\frac{E_a}{RT} + \ln \left[\frac{A}{\beta} \right]
\]

(5)

Table 4. Thirty types of mechanism functions \(g(\alpha) \) and \(f(\alpha) \) used to describe solid state reactions

<table>
<thead>
<tr>
<th>No.</th>
<th>Differential function: (f(\alpha))</th>
<th>Integral function: (g(\alpha))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1/2 \alpha^1)</td>
<td>(\alpha^2)</td>
</tr>
<tr>
<td>2</td>
<td>(-[\ln(1-\alpha)]^{-1})</td>
<td>(\alpha + (1-\alpha)\ln(1-\alpha))</td>
</tr>
<tr>
<td>3</td>
<td>(3/2[(1-\alpha)^{-1/3} - 1]^{-1})</td>
<td>(1-(2\alpha/3)-(1-\alpha)^{2/3})</td>
</tr>
<tr>
<td>4 and 5</td>
<td>(3/n) ((1-\alpha)^{2/3}) ((1-\alpha)^{1/3}) ((\alpha-1)) (n=2, 1/2)</td>
<td>(1-(1-\alpha)^{1/3}n) (n=2, 1/2)</td>
</tr>
<tr>
<td>6</td>
<td>(4(1-\alpha)^{1/2}[(1-\alpha)^{1/2}]^{1/2})</td>
<td>([1-(1-\alpha)^{1/2}]^{1/2})</td>
</tr>
<tr>
<td>7</td>
<td>(3/2(1+\alpha)^{2/3}[(1+\alpha)^{1/3} - 1]^{-1})</td>
<td>([(1+\alpha)^{1/3} - 1]^2)</td>
</tr>
<tr>
<td>8</td>
<td>(3/2(1-\alpha)^{4/3}[(1-\alpha)^{-1/3} - 1]^{-1})</td>
<td>([(1/(1+\alpha))^{1/3} - 1]^2)</td>
</tr>
<tr>
<td>9</td>
<td>(1-\alpha)</td>
<td>(-\ln(1-\alpha))</td>
</tr>
<tr>
<td>10-16</td>
<td>(1/[n(1-\alpha)][\ln(1-\alpha)]^{-(n-1)}) (n=1/4, 1/3, 1/2, 2/3, 4/5, 2, 3)</td>
<td>([\ln(1-\alpha)]^n) (n=1/4, 1/3, 1/2, 2/3, 4/5, 2, 3)</td>
</tr>
<tr>
<td>17-22</td>
<td>(1/n(1-\alpha)-(n-1)) (n=1/2, 1/3, 1/4, 2, 3, 4)</td>
<td>(1-(1-\alpha)^n) (n=1/2, 1/3, 1/4, 2, 3, 4)</td>
</tr>
<tr>
<td>23-27</td>
<td>(1/n \alpha-(n-1)) (n=1, 3/2, 1/2, 1/3, 1/4)</td>
<td>(\alpha^n) (n=1, 3/2, 1/2, 1/3, 1/4)</td>
</tr>
<tr>
<td>28</td>
<td>((1-\alpha)^2)</td>
<td>((1-\alpha)^{-1/2})</td>
</tr>
<tr>
<td>29</td>
<td>((1-\alpha)^2)</td>
<td>((1-\alpha)^{-1})</td>
</tr>
<tr>
<td>30</td>
<td>(2(1-\alpha)^{3/2})</td>
<td>((1-\alpha)^{-1/2})</td>
</tr>
</tbody>
</table>

According to these equations, the plots of \(\ln[(d\alpha/dT)/f(\alpha)(E_a(T-T_0)/RT^2 + 1)] \) and \(\ln[g(\alpha)/(T-T_0)] \) versus \(1/T \) at different heating rates \(\beta_s \) can be obtained by linear regression. The most probable mechanism function \(g(\alpha) \) is the function that affords the most linear plot with a linear regression coefficient \(R^2 \) closest to −1.000.

For accurate determination of the reaction model and pre-exponential factor, the compensation effect was used [16], and the calculated \(E_i \) and \(A_i \) values from
each of the models at different heating rates were substituted into Equation 6 to determine the compensation effect parameters \(a\) and \(b\).

\[
\ln A_i = aE_i + b
\]

(6)

The pre-exponential factor \(A_o\) was calculated by substitution of the calculated \(E_o\) from the model free method and the \(a\) and \(b\) parameters in Equation 7:

\[
\ln A_o = aE_o + b
\]

(7)

The calculated results are presented in Table 5. The \(E_o\) and \(A_o\) values were substituted into Equation 8.

\[
f(\alpha) = \beta \left(\frac{d\alpha}{dT}\right)_\alpha \left[A_o e^{\left(\frac{-E_o}{RT\alpha}\right)}\right]^{-1}
\]

(8)

<table>
<thead>
<tr>
<th>Step No.</th>
<th>(\beta) [^{\circ}C \cdot \text{min}^{-1}]</th>
<th>Mechanism function, (g(\alpha))</th>
<th>(E_i) [kJ \cdot \text{mol}^{-1}]</th>
<th>(\ln A_i) [\text{min}^{-1}]</th>
<th>(R^2)</th>
<th>(E_o) [kJ \cdot \text{mol}^{-1}]</th>
<th>(\ln A_o) [\text{min}^{-1}]</th>
<th>RSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>First mass loss</td>
<td>10</td>
<td>([-\ln(1-\alpha)]^{4/5})</td>
<td>191.4</td>
<td>26.32</td>
<td>0.993</td>
<td>231.0</td>
<td>32.89</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>185.7</td>
<td>25.37</td>
<td>0.995</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>198.6</td>
<td>27.52</td>
<td>0.993</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second mass loss</td>
<td>10</td>
<td>([-\ln(1-\alpha)]^{3/2})</td>
<td>211.9</td>
<td>27.40</td>
<td>0.994</td>
<td>239.9</td>
<td>31.68</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>188.0</td>
<td>23.90</td>
<td>0.995</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>206.0</td>
<td>26.71</td>
<td>0.994</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First step</td>
<td>5</td>
<td>([-\ln(1-\alpha)]^{4/5})</td>
<td>293.1</td>
<td>43.06</td>
<td>0.993</td>
<td>237.3</td>
<td>34.50</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td>314.1</td>
<td>44.79</td>
<td>0.992</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>361.3</td>
<td>51.87</td>
<td>0.993</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>432.4</td>
<td>62.41</td>
<td>0.992</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second step</td>
<td>5</td>
<td>([-\ln(1-\alpha)]^{3/2})</td>
<td>297.1</td>
<td>42.25</td>
<td>0.993</td>
<td>293.8</td>
<td>41.65</td>
<td>0.065</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td>311.6</td>
<td>43.61</td>
<td>0.993</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>354.2</td>
<td>49.31</td>
<td>0.993</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>360.8</td>
<td>50.08</td>
<td>0.993</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third step</td>
<td>5</td>
<td>([-\ln(1-\alpha)]^{3/2})</td>
<td>233.8</td>
<td>31.69</td>
<td>0.998</td>
<td>231.3</td>
<td>31.24</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td>246.6</td>
<td>32.81</td>
<td>0.998</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>271.6</td>
<td>35.74</td>
<td>0.998</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>277.8</td>
<td>36.40</td>
<td>0.999</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The calculated numerical values of \(f(\alpha)\) were compared with the theoretical
dependencies obtained from the $f(\alpha)$ equations (e.g., Table 4) to identify the best matching model. By applying this method to all of the reaction models, the mechanism function of Avrami-Erofeev $A_{5/4}$ was found to be the best pattern for reaction (I) and the mechanism function of Avrami-Erofeev $A_{3/2}$ appeared as the best one for reactions (II) and (III); these functions afforded minimum differences between the experimental and the theoretical data. The plots of the theoretical and experimental $f(\alpha)$ versus α at different heating rates for each of the three reactions are presented in Figure 12.
Kinetic Study of the Thermal Decomposition of Potassium Chlorate...

Second mass loss

First mass loss
Figure 12. Plots of the theoretical and experimental $f(\alpha)$ against various conversions ($\alpha = 0.05-0.95$, at 0.05 increments) at different heating rates.

The difference between the theoretical and experimental $f(\alpha)$ was calculated by means of a non-linear regression method using residual sum of squares (RSS) that should be a minimum according to Equation 9:

$$\text{RSS} = \sum (f(\alpha)_{\text{exp.}} - f(\alpha)_{\text{theor.}})^2 \to \text{minimum} \quad (9)$$

The RSS values that show the minimum difference between the experimental and theoretical $f(\alpha)$, presented in Table 5, verify the chosen reaction model. Based on the results, it can be concluded that the mechanism function with the integral forms $g(\alpha) = [-\ln(1-\alpha)]^{4/5}$, $g(\alpha) = [-\ln(1-\alpha)]^{2/3}$, and $g(\alpha) = [-\ln(1-\alpha)]^{2/3}$ related to reactions (I), (II), and (III), respectively, describe the thermal decomposition of KClO$_3$. In these types of mechanisms, it was assumed that nucleation and subsequent decomposition occurred on the surface of the crystals.
4 Conclusions

The thermal behaviour of potassium chlorate was studied by means of the non-isothermal TG/DSC technique at different heating rates. The DSC thermograms exhibit two consecutive broad exothermic peaks and the DTG results exhibit a two-step mass decrease after melting. After resolving the overlapped peaks, the reaction profiles demonstrated well separated steps under constant heating rate conditions, indicating that the reaction steps are independent processes, so their kinetic triplets were analyzed individually. The results strongly imply that a three-step mechanism with a two-step mass loss is operative for the thermal decomposition of KClO$_3$.

The activation energy for each step was computed by the isoconversional KAS method. The average activation energies from the DSC results were 237.3, 293.8, and 231.3 kJ·mol$^{-1}$ for reactions (I), (II), and (III), respectively. The values for the first and the second mass losses were 231.0 and 239.9 kJ·mol$^{-1}$, respectively. The Avrami-Erofeev of A$_{5/4}$ with functions $g(\alpha) = [-\ln(1-\alpha)]^{4/5}$ and $f(\alpha) = 5/4(1-\alpha)[-\ln(1-\alpha)]^{1/5}$ can be used to show the first reaction step (first mass loss). But the Avrami-Erofeev of A$_{3/2}$ with functions $g(\alpha) = [-\ln(1-\alpha)]^{2/3}$ and $f(\alpha) = 3/2(1-\alpha)[-\ln(1-\alpha)]^{1/3}$ is the most probable mechanism for a description of the third reaction step (second mass loss) and the second reaction step of the decomposition of KClO$_3$. There is good agreement between the DSC and DTG kinetic parameters. Investigation of the DTG peak area shows that the contribution of the first step increases with increasing heating rate (16.8, 19.4, and 22.4% mass loss for heating rates of 10, 15, and 20 °C·min$^{-1}$, respectively).

Acknowledgement

We would like to thank the research committee of Malek-ashtar University of Technology (MUT) for supporting this work.

References

